Linear Algebra II

11/04/2011, Monday, 13:00-16:00

1

Gram-Schmidt process

Let V be a real inner product space. Also let $\{u, v, w\} \subset V$ be a set of linearly independent vectors such that

$$||u|| = ||v|| = ||w|| = 1$$

and

$$\langle u, v \rangle = \frac{3}{5} \quad \langle v, w \rangle = \frac{12}{25} \quad \langle w, u \rangle = \frac{4}{5}.$$

- (a) Is the set $\{u, v, w\}$ an orthogonal set?
- (b) Find ||5u 3v||.
- (c) Find an orthonormal basis for the subspace span($\{u, v, w\}$).

2

Diagonalization

Consider the matrix

$$M = \begin{bmatrix} a & 0 \\ b & c \end{bmatrix}.$$

For which values of (a, b, c) is this matrix

- (a) diagonalizable?
- (b) diagonalizable by a unitary matrix?
- (c) diagonalizable by an orthogonal matrix?

3

Singular value decomposition

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

- (a) Show that A is normal.
- (b) Show that all eigenvalues of A are real.
- (c) Show that $|\lambda|$ is a singular value of A if λ is an eigenvalue of A.
- (d) Find a singular value decomposition of A in terms of its eigenvalues and orthogonal diagonalizer.
- (e) Find the best rank k approximation of A.

(a) Consider the function

$$f(x,y) = \sin(x) + y^3 + 3xy + 2x - 3y.$$

- (i) Show that (0,-1) is a stationary point.
- (ii) Determine whether this point corresponds to a local minimum, maximum, or saddle point.
- (b) Let A be a symmetric matrix. Show that e^A is symmetric and positive definite.

5

Cayley-Hamilton theorem

Let $A \in \mathbb{R}^{2 \times 2}$ be a matrix with the characteristic matrix $p_A(\lambda) = \lambda^2 - \lambda - 1$. Let

$$\alpha_0 = \alpha_1 = 1$$

and

$$\alpha_{k+2} = \alpha_{k+1} + \alpha_k$$

for $k \geq 0$. Show that

$$A^{n+2} = \alpha_{n+1}A + \alpha_n I$$

for $n \geq 0$. [Hint: Induction!]

6

Jordan canonical form

Find the Jordan canonical form J and determine a matrix X such that $X^{-1}AX = J$ for the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Each problem is 15 points: $6 \times 15 + 10$ (gratis)=100.